The generator matrix

 1  0  0  0  1  1  1  3  1  1  1  1  1 2X+3  1  1  1 2X  X 2X+6  1  1  1  6  1  1  1  0  1 X+6  1  1  0  1 2X+3  1  1  0  1  1  1 2X+6  1  1  1  1  1 X+3  1  1 X+6  1  1  1  1  1  1  X X+3 2X+6  1  1 2X+6  1  1  1 2X+6 2X+6  1
 0  1  0  0  3  1  7  1  X X+6 2X+8 2X+5 X+7  1 2X+1  8 X+8  1 2X  1 2X+7 X+3 X+5  1 X+4 2X+8  0  1  6  6  5 2X+3  1  4  1  7  1  1 X+2  2 X+2  1 2X+5 2X+2 2X+7 2X+3  X  1 X+2 X+4  1 X+5  0 X+3 X+7 2X  4  1  0  X 2X+7  8 X+3 2X+2  2 X+6  1  1  0
 0  0  1  0 2X+4 2X+1 X+2 2X+4 X+1 X+5  6  4 X+7  4 X+6 X+3 2X+2 2X+5  1  X 2X+5  5  7  5  X 2X+5 X+7 2X X+5  1 2X+4  6 2X+2  3 2X  1 2X+2 X+7  2 2X 2X+4 2X+4 2X+3  0  3 2X+8 2X  2 2X+8 2X+5 X+6 X+7  X X+6  4 2X+1  6  4 X+3  1  5 2X+6  X  5  1 2X  6 X+1  3
 0  0  0  1 2X+2  6 2X+8 2X+8  7  X  1 X+6  5 X+4  3  8  X 2X X+7 X+2 2X+4 X+4 2X+4  7 2X+1 X+1 X+3 2X+1  8 2X+8 X+2 2X+8 X+8  2 X+6 X+4 X+3 2X  5 X+3  4 2X+7  5 2X+6  1  7 X+1  X 2X+3  X 2X+1 2X+2 2X+8  7 X+4 X+4 2X  2  1 2X+5 2X+4 2X+5  1 X+1 X+6 X+8  5  8  0

generates a code of length 69 over Z9[X]/(X^2+3,3X) who�s minimum homogenous weight is 126.

Homogenous weight enumerator: w(x)=1x^0+326x^126+1308x^127+2772x^128+5846x^129+9030x^130+11058x^131+18648x^132+23862x^133+24894x^134+38760x^135+44064x^136+44832x^137+56794x^138+54570x^139+48096x^140+48356x^141+36942x^142+22044x^143+18444x^144+11112x^145+4890x^146+2778x^147+1272x^148+276x^149+226x^150+72x^151+24x^152+78x^153+18x^154+30x^155+12x^156+6x^158

The gray image is a code over GF(3) with n=621, k=12 and d=378.
This code was found by Heurico 1.16 in 477 seconds.